SS2 third Term further Mathematics past questions and answers
Here they are;
Question: If f(x) = 2x^3 - 5x^2 + 3x + 1f(x)=2x
3
−5x
2
+3x+1, find f'(x)f
′
(x).
A) 6x^2 - 10x + 36x
2
−10x+3
B) 6x^2 - 10x + 16x
2
−10x+1
C) 4x^3 - 5x^2 + 3x4x
3
−5x
2
+3x
D) 6x^2 - 5x + 36x
2
−5x+3
Answer: A) 6x^2 - 10x + 36x
2
−10x+3
Question: Determine the inverse of the function g(x) = 2x - 3g(x)=2x−3.
A) g^{-1}(x) = \frac{x + 3}{2}g
−1
(x)=
2
x+3
B) g^{-1}(x) = \frac{x - 3}{2}g
−1
(x)=
2
x−3
C) g^{-1}(x) = \frac{2x + 3}{2}g
−1
(x)=
2
2x+3
D) g^{-1}(x) = \frac{2x - 3}{2}g
−1
(x)=
2
2x−3
Answer: B) g^{-1}(x) = \frac{x - 3}{2}g
−1
(x)=
2
x−3
Question: If A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}A=[
2
1
3
4
] and B = \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}B=[
1
2
0
−1
], find ABAB.
A) \begin{bmatrix} 8 & 3 \\ 9 & -1 \end{bmatrix}[
8
9
3
−1
]
B) \begin{bmatrix} 8 & 9 \\ 5 & -4 \end{bmatrix}[
8
5
9
−4
]
C) (\begin{bmatrix} 5 & 3 \ 6 &
Question: Solve the equation 2x^2 - 5x + 2 = 02x
2
−5x+2=0.
A) x = 2, \frac{1}{2}x=2,
2
1
B) x = 1, -2x=1,−2
C) x = \frac{1}{2}, -2x=
2
1
,−2
D) x = 2, -\frac{1}{2}x=2,−
2
1
Answer: A) x = 2, \frac{1}{2}x=2,
2
1
Question: Find the derivative of y = 3x^2 + 2x - 1y=3x
2
+2x−1 with respect to xx.
A) 6x + 26x+2
B) 3x^2 + 2x3x
2
+2x
C) 6x - 26x−2
D) 3x^2 - 23x
2
−2
Answer: A) 6x + 26x+2
Question: If sin^2 \theta + cos^2 \theta = 1sin
2
θ+cos
2
θ=1, find tan^2 \thetatan
2
θ.
A) tan^2 \theta = sin^2 \thetatan
2
θ=sin
2
θ
B) tan^2 \theta = cos^2 \thetatan
2
θ=cos
2
θ
C) tan^2 \theta = 1tan
2
θ=1
D) tan^2 \theta = \frac{1}{cos^2 \theta}tan
2
θ=
cos
2
θ
1
Answer: D) tan^2 \theta = \frac{1}{cos^2 \theta}tan
2
θ=
cos
2
θ
1
Question: Solve the inequality 2x - 3 < 52x−3<5 for xx.
A) x < 4x<4
B) x > 4x>4
C) x < 2x<2
D) x > 2x>2
Answer: B) x > 4x>4
Post a Comment